
A One-Pass Space-E�cient Algorithm for Finding

Quantiles

Rakesh Agrawal Arun Swami�

IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

Abstract

We present an algorithm for �nding the quantile values of a large unordered dataset
with unknown distribution. The algorithm has the following features: i) it requires only
one pass over the data; ii) it is space e�cient | it uses a small bounded amount of
memory independent of the number of values in the dataset; and iii) the true quantile
is guaranteed to lie within the lower and upper bounds produced by the algorithm.
Empirical evaluation using synthetic data with various distributions as well as real data
show that the bounds obtained are quite tight. The algorithm has several applica-
tions in database systems, for example in database governors, query optimization, load
balancing in multiprocessor database systems, and data mining.

1 Introduction

The p-quantile of an ordered sequence of data values is the smallest value below which p

fraction of the total values in the sequence lie. Accurate estimation of the number of tuples

satisfying a predicate is a prerequisite for a good query optimizer [11]. It was suggested in

[9] that query optimizers should maintain information about attribute values distribution as

p-quantiles, and estimation procedures were proposed using p-quantiles. Information about

p-quantiles is also useful for balancing workload across multiple processors in a parallel

database system [4].

�Current address: Silicon Graphics Computer Systems, 2011 N. Shoreline Blvd, Mountain View, CA

94043.

1

While probabilistic estimates for p-quantile values are adequate for some applications, others

require guaranteed bounds on p-quantile values. For example, guaranteed bounds on p-

quantile values are important in the operation of governors for relational database systems.

Governors are used to provide feedback to users on response times for queries. A governor

can either indicate the expected response time or provide some upper bound on the response

time. For example, SmartMode from the IBI Inc. provides the �rst kind of feedback.

If guaranteed bounds on response times are required, the governor must use guaranteed

bounds on quantile values to estimate selectivities. The need for such predictive governors

is a major user requirement.

As another example of an application of the guaranteed bounds on the p-quantile values,

we cite the algorithm for mining association rules given in [1]. This algorithm concurrently

synthesizes several functions of the form f(A) � �A, while making a pass over a relation

R, where A is some subset of attributes of R and �A is a cut-o� threshold that depends on

values of A in R. Computation of each of �A requires determination of a di�erent p-quantile

value, with guaranteed bounds.

1.1 Desiderata

The above cited applications yield the following desiderata for an algorithm for �nding

quantiles:

� It should not require prior knowledge of the data distribution.

� It should require only one pass over the data, since the data may be too large to �t in

memory.

� It should be space e�cient, since p-quantiles values of several attributes of the same

relation may need to be obtained.

� The true p-quantile should be guaranteed to lie within the lower and upper bounds

produced by the algorithm, and the bounds should be tight.

We present in this paper an algorithm that has all of the above features.

1.2 Related work

A straightforward method for �nding p-quantiles is to sort the data and then make a pass

over the sorted data to �nd the desired values. For large datasets, sorting requires multiple

passes over the data and may incur large I/O costs besides the processing costs. Also, this

procedure must be repeated for each attribute of the same relation for which p-quantiles

are desired, making it computationally expensive. In [5], a technique that recursively uses

a linear median �nding algorithm [2] was proposed. It avoids external sorting and obtains

accurate quantiles. However, this algorithm is not a one-pass algorithm and processes some

data blocks multiple times.

The cost of �nding quantiles can be reduced by using random sampling [3]. The idea is to

take a random sample of the data, sort the sample values, and then use the sorted sample

to estimate the p-quantile values. However, the p-quantile values produced by random

sampling do not have guaranteed error bounds. Another algorithm for �nding p-quantiles

was proposed in [6]. This algorithm maintains a sorted stack of p-quantile estimated values

and counts and updates those estimates as new data values are scanned using a piece-

wise parabolic curve-�tting technique. Again, no guarantees can be given about the true

p-quantile values using this technique.

Munro and Paterson [8] describe both single pass and multi-pass algorithms for determining

quantiles (they call this the selection problem). Some of the algorithms are probabilistic

and may fail to come up with correct bounds for the quantiles. The only deterministic

single-pass algorithm they describe requires O(N) storage, i.e., storage of the same order

as the size of the data.

Another method for estimating quantiles works as follows. Let the range of values be

partitioned into k intervals. These intervals are known as bins. A single pass is made over

the data and the count of values in each bin is accumulated. The bins are scanned from

lowest to highest values and the quantiles are determined based on the counts in the bins.

In [10] one such method is analyzed. At �rst glance, this method appears to meet all our

criteria. Only one pass is needed, the quantile is guaranteed to lie within a bin and modest

computational and storage resources are required.

The problem is that unless the data distribution is known a priori, there is no simple way

to determine what the boundaries of the bins should be. Determining the bin boundaries is

almost as hard as determining the quantile values. In the absence of any knowledge, bins

of equal width ranging from the minimum value to the maximum value can be used. A

problem with this is that we may not know the minimum and maximum values. Sampling

can be used to approximate these values but this requires more work. Even if the minimum

and maximum values are known, problems can arise if values that are close together (fall

into the same bin) are of high frequency. This scenario is common in real data where clusters

of high frequency values tend to occur. Multiple frequent values in a single bin may result

in highly inaccurate estimates for quantile values.

The algorithm we propose does not require a priori determination of bin boundaries. One

way of viewing our algorithm is that it is a dynamic version of the algorithm in [10] in which

the bin boundaries are determined on-the-
y and are continuously adjusted.

1.3 Formal Problem Statement

Quantile Problem. The p-quantile of an ordered sequence of data values is the smallest

value in the sequence below which p fraction of the total values in the sequence lie. We can

express the solution to the p-quantile problem in terms of another problem.

Let X = fxig be a large unordered dataset, whose distribution is not known a priori. Denote

by kXk the cardinality of X . Let � = p � kXk; p 2 (0; 1). Given a target count � and

assuming that kXk � � , we can de�ne the following problem:

AL-LEQ Problem (at least - less than or equal to). Find the smallest value v� in X such

that kX�k � � , where X� = fxijxi 2 X and xi � v�g.

The exact solution to the AL-LEQ problem solves the p-quantile problem. An approximate

solution to the AL-LEQ problem would �nd a value v� in X satisfying all the conditions

except that it may not be the smallest such value. Then, the approximate solution provides

an upper bound on the p-quantile value. Now consider the following problem:

AM-LT Problem (at most - less than). Find the largest value v� in X such that kX�k < � ,

where X� = fxijxi 2 X and xi < v�g.

The approximate solution to the AM-LT problem provides a lower bound on the p-quantile

value. Hence, if we can �nd approximate solutions to the AL-LEQ and the AM-LT problems,

we have guaranteed bounds on the desired p-quantile.

If we solve the AM-LT and AL-LEQ problems in the same pass, we obtain the lower and

upper bounds respectively for the p-quantile value of X . By solving these problems for

di�erent values of p in the same pass, we obtain di�erent p-quantile values for X .

By symmetry, we can obtain lower and upper bounds for the p-quantile value by solving

(approximately) the following problems:

AL-GEQ Problem (at least - greater than or equal to). Find the largest value v� in X

such that kX�k � � , where X� = fxijxi 2 X and xi � v�g.

AM-GT Problem (at most - greater than). Find the smallest value v� in X such that

kX�k < � , where X� = fxijxi 2 X and xi > v�g.

1.4 Outline of the paper

The rest of this paper is organized as follows. In Section 2, we describe a generic algorithm

that can be customized to solve the problems described above. We prove that the algorithm

is correct and show an example execution trace. In Section 3, we present an empirical

evaluation of the algorithm using both synthetic and real data. We conclude with a summary

in Section 4.

2 The Algorithm

We assume, for ease of exposition, that the input dataset X is a set of simple values. In

general, X may be an n-ary relation and several functions (including accesser functions for

attribute values) may have been de�ned, each of which maps the tuples of the relation to

simple values. By maintaining a separate set of counters for each function, the proposed

technique can be used for �nding quantile values for all of these functions in a single pass.

We �rst present a generic algorithm, and then show how it can be customized to solve the

speci�c problems described in Section 1.3.

2.1 The Generic Algorithm

The algorithm given in Figure 1 uses a data structure H , which is an ordered list of k

elements e1; e2; : : : ; ek. Here k is the maximum number of elements in H , and we assume

that k � 2. Each element ei of H is a (value; count) pair. We will use the notations ei:value

and ei:count respectively to refer to the value and count �elds of the list element ei. The

interpretation of these �elds is that ei:count is approximately the count of sequence entries

that fall between ei:value and ei+1:value. The list H is initially empty. The operator � is

a generic comparison operator that will be made speci�c in Section 2.2.

In Figure 1,N1
H andN2

H need not be computed for every input value by iterating over all the

elements in H . These two counts can easily be maintained incrementally. We have omitted

these details in to avoid distracting the reader from the main ideas in the algorithm.

2.2 Customization of the Generic Algorithm

� AL-GEQ Problem:

{ Maintain H in increasing order of the value �eld of the elements.

{ The � operator is the comparison operator <.

� AL-LEQ Problem:

{ Maintain H in decreasing order of the value �eld of the elements.

{ The � operator is the comparison operator >.

� AM-GT Problem:

{ Set � = kXk � � + 1.

{ Solve the AL-LEQ Problem for the new value of � .

� AM-LT Problem:

{ Set � = kXk � � + 1.

{ Solve the AL-GEQ Problem for the new value of � .

H : An ordered list of maximum k (user-speci�ed but � 2) elements, initialized to be empty

forall values x in X do begin

if there exists an element ei in H suchthat ei:value = x then
set ei:count = ei:count + 1

else begin

if number of elements in H < k then

insert (x,1) in H
elsif x � e1:value then begin

let N1
H =
Pk

i=1 ei:count

if N1
H � � then
discard x

else begin

let el be the last element of H
set el�1:count = el�1:count + el:count

delete el
insert (x,1) in H

end

end

else begin

�nd the last ei in H such that ei:value � x
set ei:count = ei:count + 1

end

end

let N2
H =
Pk

i=2 ei:count
if N2

H � � then

delete e1
end

output e1:value

AL-GEQ Problem: H increasing order, � � <
AL-LEQ Problem: H decreasing order, � � >

AM-GT Problem: � = kXk � � + 1, solve the AL-LEQ Problem
AM-LT Problem: � = kXk � � + 1, solve the AL-GEQ Problem

Figure 1: Generic algorithm and its customization

REMARKS:

� If the values are numeric, the AL-LEQ and AM-LT problems can be solved by solving

the AL-GEQ and AM-GT problems for the negated values and vice versa. However, in

general, X need not be numeric, so that the negation of the values in X is not de�ned

but the values in X can be ordered and their p-quantiles determined.

� Multiple problems can be solved in a single pass by maintaining a separate H list for each

problem.

2.3 Example

We show an example execution of the algorithm for the AL-GEQ problem in Figure 2. We

are interested in �nding the largest value v� in input X such that there are at least �ve

values in X that are greater than or equal to v� (that is, target count � = 5). The list

structure H is allowed to have a maximum of 3 elements (that is, k = 3). In this �gure,

the number before colon (:) is the input value and the list after colon shows the state of

H . An element e of this list is represented as V(C) where e:value = V and e:count = C. The

algorithm returns 78 as the answer which happens to be the exact answer.

2.4 Complexity

The time complexity of the algorithm is O(kXk�logk) since any new value has to be inserted

in the sorted list of size k. Each problem requires 2 � k memory words. Our experiments

indicate (see Section 3) that a small value for k is su�cient to estimate all p-quantiles with

acceptable errors.

2.5 Correctness

We only discuss the correctness of the algorithm for the AL-GEQ problem. The correctness

proofs for other problems are similar.

Lemma 1. De�ne for element ej

N
j
H =

kX

i=j

ei:count

and

N j
X = kfxi 2 X such that xi � ej :valuegk

where both N j
H and N j

X are computed at the same point in time. Some or all of the xi

values in X have been read. Then

N
j
H � N

j
X

Target count = 5

Maximum number of elements in H, k = 3

Input Stream: 91 55 86 76 41 36 97 25 63 68 2 78 15 82 47

Execution:

91: 91(1) // insert 91 (||H|| < k)

55: 55(1) 91(1) // insert 55 (||H|| < k)

86: 55(1) 86(1) 91(1) // insert 86 (||H|| < k)

76: 55(2) 86(1) 91(1) // increment the count of 55

41: 55(2) 86(2) // delete last, absorbing its count in previous

41(1) 55(2) 86(2) // insert 41

36: 41(1) 55(2) 86(2) // discard 36 (36 < 41, total count >= target)

97: 41(1) 55(2) 86(3) // increment the count of 86

55(2) 86(3) // delete first, count of remaining >= target

25: 25(1) 55(2) 86(3) // insert 25 (||H|| < k)

55(2) 86(3) // delete first, count of remaining >= target

63: 55(2) 63(1) 86(3) // insert 63 (||H|| < k)

68: 55(2) 63(2) 86(3) // increment the count of 63

63(2) 86(3) // delete first, count of remaining >= target

2: 2(1) 63(2) 86(3) // insert 2 (||H|| < k)

63(2) 86(3) // delete first, count of remaining >= target

78: 63(2) 78(1) 86(3) // insert 78 (||H|| < k)

15: 63(2) 78(1) 86(3) // discard 15 (15 < 63, total count >= target)

82: 63(2) 78(2) 86(3) // increment the count of 78

78(2) 86(3) // delete first, count of remaining >= target

47: 47(1) 78(2) 86(3) // insert 47 (||H|| < k)

78(2) 86(3) // delete first, count of remaining >= target

Algorithm Returns: 78

Sorted Stream: 2 15 25 36 41 47 55 63 68 76 78 82 86 91 97

Correct Answer: 78

Figure 2: AL-GEQ Example

for all elements ej in H at all times.

PROOF. At any time, if the algorithm discards an input value x, then x < e1:value. In

that case x does not contribute to a count of N j
H or N j

X for all j.

Otherwise, x contributes to a count of some element ej in H . The element ej is such that

either ej :value = x or ej is the last element in H such that ej :value < x. In both the cases,

for 1 � i � j, the value N i
H has increased by 1 and so has the value of N i

X ; for i > j, the

value N i
H of remains unchanged and so also the value of N i

X .

When the algorithm deletes the last element el of H , el:count is added to el�1:count. Thus,

the value of N i
H remains unchanged and equal to N i

X for i 2 1 � � � l � 1.

To see that N j
H and N j

X are not always equal, consider the case when the algorithm deletes

the �rst element e1 of H , and the next value v falls between ej and ej+1. Then the value

v is inserted in position (j + 1). Since the values between v and the old ej+1 have been

\forgotten", we have that N j+1
H � N j+1

X .

Lemma 2. After the processing of m input values,

N1
H = m; if m � �

or

N1
H � �; if m > �:

PROOF. No input value is discarded before � values have been processed and they all

contribute to a count in H . Once N1
H becomes equal to � its value can be reduced only by

the deletion of an element in H . There are two cases: the �rst element e1 or the last element

el of H is deleted. The �rst element is deleted only when the current value of N2
H � � .

Then N1
H becomes equal to the current value of N2

H which we know is � � . When the

last element el is deleted, el:count is added to el�1:count. Hence the value of N1
H remains

unchanged.

Theorem. The algorithm in Figure 1 correctly solves the Al-GEQ problem.

PROOF. We have assumed that kXk � � . After the set X has been processed, by Lemma 2

N1
H � � . By Lemma 1, N1

H � N1
X . Thus, there are at least � values in X that are greater

than or equal to e1:value. The algorithm correctly reports e1:value as the result.

2.6 Additional Heuristics

It is possible to construct pathological cases for the proposed algorithm. The worst-case

error for solving any of the four problems is kXk � kHk. For example, for the AL-GEQ

problem, the worst case arises when the �rst kHk values in the input data stream consists

of the kHk � 1 largest distinct values and the smallest value. In that case, the largest

kHk � 1 values will occupy kHk � 1 positions of H and the smallest value will occupy the

�rst position.

Several heuristics can avoid this worst case behavior. We present here three such heuristics.

The basic idea behind these heuristics is to perturb H in such a way that correctness is not

compromised and a position is opened up in H to avoid accumulating a large count at the

�rst position. Here are the heuristics:

1. After every n input values, where n is an heuristically chosen parameter, do the following:

el�1:count = el�1:count+ el:count

discard el

2. Suppose that the input value is such that it has incremented the count of e1 in H . Now

if

e1:count > n�N2
H

where n is an heuristically chosen parameter, do the following:

el�1:count = el�1:count+ el:count

discard el

3. Suppose that the input value is such that it has incremented the count of e1 in H . Now

if1

e1:count � n� �

then do the following:

el�1:count = el�1:count+ el:count

discard el

Unfortunately, these heuristics do not always improve the accuracy. In fact, they can even

degrade accuracy as the following example shows. Assume that � = 5 and kHk = 3, and

consider the following input stream for the AL-GEQ problem:

1 1 1 1 2 11 12 13 1 3 14 4 15

The algorithm in Figure 1 when applied to this data stream gives 11 as the answer, which

is exactly correct. However, if Heuristic 3 with n set to 1 is applied to this data stream, we

get 2 as the answer.

Fortunately, as the results below using both synthetic and real data show, the empiri-

cally observed accuracy of the proposed algorithm is very good. Hence, it does not seem

worthwhile to incur the additional implementation complexity due to these heuristics. Our

experiments also indicated that on average these heuristics did not improve the accuracy.

1We wish to thank Bruce Lindsay for suggesting a version of this heuristic for n = 1.

3 Empirical Evaluation

We conducted several experiments to empirically assess the behavior of our algorithm. We

�rst show the results of experiments for X generated according to two distributions: the

uniform distribution and the Zipf distribution [12]. For the Zipf distribution, we choose

the Zipf parameter to be 0.86, which corresponds to the \80-20" distribution. We also

experimented with other distributions by choosing di�erent values for the Zipf parameter

and found similar results.

The number of values in X (kXk) was one of f1 million, 2 million, 5 million, 10 milliong.

The number of distinct values was �xed at kXk/10. The values are positioned randomly in

X . The p-quantile bounds were determined for the dectiles, i.e., (10%, 20%, ..., 80%, 90%).

Denote by Ne the number of tuples between the estimated bounds for each p-quantile.

Denote by Nt the number of tuples between the true bounds for the corresponding p-

quantile. Note that if the value of the p-quantile is duplicated m times then Nt = m. The

relative error is computed as

(Ne �Nt)=kXk� 100

Note that our algorithm gives the bounds on p-quantile values. If a speci�c p-quantile value

is desired, one can use either of the two bounds for this purpose. If the domain of input

values is numeric, one can also take the average of the two bounds. The error we report

is the sum of the two errors for the two bounds from the true p-quantile value. Hence, we

are being conservative in our error measurement in the sense that we are reporting the sum

of two errors. In practice, if we pick either of the bounds for the p-quantile value, we will

incur only one of the errors.

A number of runs were carried out with the sequence of the data values being varied by

changing the seed. For each run, the relative error described above is calculated. The error

is estimated by averaging over the errors in the runs. We also calculated the 95% con�dence

interval. Su�cient runs were performed to ensure that the 95% con�dence interval was less

than 0.1%.

3.1 Varying the size of H

We varied the maximum size of H from 250 to 1000 in steps of 250, keeping kXk �xed at

1 million. The results of this experiment are shown in Table 1. We observe that beyond a

reasonable size for H , the error rates are quite
at. In the remaining experiments, we �xed

the maximum size of H to be 750.

3.2 Varying the size of input

We now test the hypothesis that using a reasonable size of H (in our case 750) results in

good error behavior for di�erent stream sizes, i.e., for di�erent values of kXk. In Table 2

Dectiles Uniform Distribution Zip�an Distribution
H Size H Size

250 500 750 1000 250 500 750 1000

10% 1.4 0.4 0.4 0.4 0.5 0.0 0.0 0.0

20% 0.5 0.4 0.3 0.2 0.0 0.0 0.0 0.0

30% 0.3 0.2 0.1 0.1 0.3 0.1 0.0 0.0

40% 2.3 0.6 0.4 0.1 0.5 0.4 0.3 0.1

50% 0.5 0.5 0.5 0.5 1.1 0.5 0.5 0.1

60% 0.6 0.5 0.5 0.5 0.9 0.5 0.4 0.4

70% 1.0 0.3 0.2 0.2 1.5 0.1 0.1 0.1

80% 0.0 0.0 0.0 0.0 0.7 0.2 0.2 0.1

90% 0.2 0.1 0.1 0.1 0.5 0.3 0.3 0.2

Table 1: Varying the size of H

Dectiles Uniform Distribution Zip�an Distribution
kXk kXk

1 2 5 10 1 2 5 10
million million million million million million million million

10% 0.4 0.2 0.6 0.1 0.0 0.0 0.0 0.1

20% 0.4 0.4 0.1 0.2 0.0 0.5 0.3 0.3

30% 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.3

40% 0.6 0.1 0.4 0.1 0.4 0.2 0.2 0.4

50% 0.5 0.4 0.1 0.2 0.5 0.1 0.0 0.3

60% 0.5 0.6 0.4 0.2 0.4 0.3 0.1 0.3

70% 0.3 0.0 0.1 0.3 0.1 0.1 0.1 0.0

80% 0.0 0.6 0.1 0.5 0.2 0.1 0.4 0.1

90% 0.1 0.1 0.0 0.1 0.3 0.4 0.1 0.1

Table 2: Varying the size of input

we show how the errors measured change as kXk varies from 1 million to 10 million.

We see that increasing the number of values in the stream X does not a�ect the error

signi�cantly even though the maximum size of H is kept �xed at 750. Assume that X is a

set of four byte integers. Each count can be maintained in four bytes. Then, each entry in

H is a eight byte entry, and we can determine all the dectiles using about 0.6 megabyte of

memory. This shows that using a small bounded amount of memory we can obtain accurate

bounds on the p-quantiles. The algorithm becomes even more attractive as the number of

values in the stream increases.

3.3 Comparison with Random Sampling

Next we compare the accuracy of our algorithm with random sampling, as random sampling

is the technique most often used to estimate quantiles. Random sampling was given the same

amount of memory for its sample as used by all the H structures needed for computing the

dectile values. The errors produced by the two algorithms are shown in Table 3 for kXk = 1

million and size of H set to 750.

We see that the accuracy of our algorithm is comparable to the random sampling. In

addition, the true p-quantile values are guaranteed to lie within the bounds produced by

our algorithm, something that random sampling and other probabilistic algorithms are

unable to provide.

Dectiles Uniform Distribution Zip�an Distribution
Our Alg Sampling Our Alg Sampling

10% 0.4 0.1 0.0 0.1

20% 0.4 0.3 0.0 0.2

30% 0.1 0.5 0.1 0.4

40% 0.6 0.5 0.4 0.1

50% 0.5 0.5 0.5 0.1

60% 0.5 0.0 0.4 0.1

70% 0.3 0.1 0.1 0.3

80% 0.0 0.1 0.2 0.0

90% 0.1 0.2 0.3 0.0

Table 3: Comparison with Random Sampling: Synthetic Data

3.4 Reality Check

Finally, we assessed the accuracy behavior of our algorithm on data obtained from some

customer databases, and compared it with random sampling. Data sets D1 through D5 had

about 200,000 values and data set D6 had about 11.5 million values. The results are shown

in Tables 4 and 5.

We see that our algorithm is somewhat more accurate than random sampling. We should

note that the real data di�ers from the synthetic data we generated in that the real data has

more duplicates. Also, the data distributions are not necessarily either uniform or Zip�an.

Dectiles Data Set D1 Data Set D2 Data Set D3
Our Alg Sampling Our Alg Sampling Our Alg Sampling

10% 0.0 0.2 0.0 0.2 0.0 0.2

20% 0.0 0.3 0.1 0.2 0.5 0.0

30% 0.0 0.2 0.0 0.2 0.0 0.3

40% 0.0 0.3 0.0 0.3 0.1 0.2

50% 0.0 0.3 0.0 0.5 0.2 0.3

60% 0.0 0.2 0.0 0.3 0.2 0.3

70% 0.0 0.0 0.0 0.0 0.4 0.2

80% 0.0 0.3 0.0 0.4 0.0 0.2

90% 0.0 0.0 0.0 0.0 0.0 0.0

Table 4: Comparison with Random Sampling: Customer Data Sets D1, D2, D3

Dectiles Data Set D4 Data Set D5 Data Set D6
Our Alg Sampling Our Alg Sampling Our Alg Sampling

10% 0.0 0.2 0.0 0.1 0.0 0.3

20% 0.1 0.2 0.0 0.1 0.0 0.3

30% 0.2 0.3 0.0 0.3 0.0 0.0

40% 0.0 0.2 0.0 0.2 0.0 0.0

50% 0.1 0.3 0.0 0.3 0.0 0.4

60% 0.2 0.3 0.0 0.0 0.0 0.1

70% 0.0 0.6 0.0 0.0 0.0 1.3

80% 0.1 0.0 0.0 0.1 0.0 0.0

90% 0.1 0.0 0.0 0.1 0.0 0.5

Table 5: Comparison with Random Sampling: Customer Data Sets D4, D5, D6

4 Summary

We presented an algorithm for estimating p-quantiles that has the following features:

� It does not require prior knowledge of the data distribution.

� It requires only one pass over data.

� The true p-quantile is guaranteed to lie within the lower and upper bounds produced by

it.

� The bounds produced are quite accurate as shown by the errors observed in the experi-

ments using both synthetic and real data.

� It is space e�cient. Accurate results were obtained by using a small bounded amount of

memory that is independent of the number of values in the dataset.

It was shown in [7] that in the case of queries involving multiple attributes, multi-dimensional

equi-depth histograms are superior to equi-width histogram, and an algorithm based on

multiple sorts was proposed for this purpose. Finding multi-dimensional equi-depth his-

tograms is the same as �nding p-quantiles in multi-dimensions. For future work, it would

be interesting to explore how the algorithm proposed in this paper can be generalized to

multi-dimensions. Finally, a probabilistic analysis of the proposed algorithm to characterize

its average case behavior is a challenging open problem.

Acknowledgments. We thank Tomasz Imilienski for his participation in initial discus-

sions. We also thank Peter Haas, Bruce Lindsay, Guy Lohman and Larry Stockmeyer for

their comments.

References

[1] R. Agrawal, T. Imielinski, A. Swami: \Mining Associations between Sets of Items in
Massive Databases," ACM SIGMOD 93, May 1993, 207{216.

[2] M. Blum et. al, \Time Bounds for Selection", Journal of Computers and Systems, 7:4,
1972, 448{461.

[3] W. G. Cochran, Sampling Techniques, John Wiley and Sons, New York, NY, 3rd
edition, 1977.

[4] D. J. DeWitt, J. F. Naughton, and D. A. Schneider, \Parallel Sorting on a Shared-
Nothing Architecture using Probabilistic Splitting," 1st Int'l Conf. on Parallel and
Distributed Information Systems, Miami Beach, Florida, December 1991, 280{291.

[5] A. P. Gurajada and J. Srivastava, \Equidepth Partitioning of a Data Set based on
Finding its Medians", Technical Report TR 90-24, Computer Science Dept., Univ. of
Minnesota, 1990.

[6] R. Jain and I. Chlamtac, \The P 2 Algorithm for Dynamic Calculation of Quantiles
and Histograms Without Storing Observations," CACM, Vol. 28, No. 10, Oct. 1985,
1076{1085.

[7] M. Muralikrishna and D. J. DeWitt, \Equi-Depth Histograms for Estimating Selectiv-
ity Factors for Multi-dimensional Queries," ACM SIGMOD 88, Chicago, Illinois, June
1988, 28{36.

[8] J. I. Munro and M. S. Paterson, \Selection and Sorting with Limited Storage," Theo-
retical Computer Science, Vol. 12, 1980, 315{323.

[9] G. Piatetsky-Shapiro, \Accurate Estimation of the Number of Tuples Satisfying a
Condition", ACM SIGMOD 84, Boston, June 1984, 256{276.

[10] B. W. Schmeiser and S. J. Deutsch, \Quantile Estimation from Grouped Data: The
Cell Midpoint," Communications in Statistics: Simulation and Computation, B6(3),
1977, 221{234.

[11] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lories, and T. G. Price,
\Access Path Selection in a Relational DatabaseManagement System", ACM SIGMOD
79, June 1979.

[12] G. K. Zipf, Human Behavior and the Principle of Least E�ort, Addison-Wesley, Read-
ing, MA, 1949.

